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Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Relate continuous development to classic software process models 
(waterfall and agile)


• Identify the stages of a continuous development pipeline and 
describe how they relate to improving code velocity and quality 



What is a software process?

• A structured set of activities required to develop a software product


• Specification


• Design and implementation


• Validation


• Evolution (operation and maintenance)


• Goal: Minimize Risk


• Falling behind schedule


• Changes to requirements


• Bugs/unintended effects of changes



Software Verification and Validation
Quality Assurance

• Verification and validation (V & V) is intended to show that a system conforms 
to its specification and meets the requirements of the customer(s).


• Involves checking and review processes, and acceptance or beta testing.


• Custom software: Acceptance testing involves executing the system with test 
cases that are derived from the real data to be processed by the system in the 
customer’s environment.


• Generic software: Beta testing executes the system in many customers’ 
environments under real use.



Software Evolution
Software is inherently flexible: we want high development velocity!
• As requirements change due to changing business circumstances, the 

software that supports the business must also evolve and change.


• Most software today is built on large (and old) codebases
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Process Models

• If we say that building software requires:


• Specification


• Design/Implementation


• Validation


• Evolution


• How do we structure our organization/development teams/tasks to do this 
most efficiently?



Software Processes
Code-and-fix

• Really Bad


• Really Common


• Advantages


• No Overhead


• No Expertise


• Disadvantages


• No means of assessing progress


• Difficult to coordinate multiple programmers


• Useful for “hacking” single-use/personal-use programs: start with empty program and debug until it works
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Software Processes
Waterfall Model

• Widely used today


• Advantages


• Measurable progress


• Experience applying steps in past projects can be used in 
estimating duration of “similar” steps in future projects


• Produces software artifacts that can be re-used in other projects


• Disadvantages


• Difficulty of accommodating change after the process is 
underway: One phase has to be complete before moving onto 
the next phase.
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Software Processes
Agile Model

• Agile results in an iterative model, 
where each iteration is several weeks 
long and results in several features 
being built


• Recognize that requirements ALWAYS 
evolve as you are trying to build 
something


• Plus, maybe you can get useful 
feedback by delivering a partial app 
early
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Cost to Fix a Defect Over Time
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“Shift Left” - find defects earlier in software lifecycle



Software Processes
Continuous Development

• Like agile, but…


• Fast feedback loops


• We have a formal mechanism for deploying new versions of code and 
validating (test/staging/production)

Develop Build Test Deploy Monitor



Why Continuous Development?
Unblocking developers and increasing velocity



Why Continuous Development?
Improving the end-user experience

If you have:
1 
5 
10 
100 

1,000

developers working on your product

How often can you deliver your customers:
Bug fixes

Security patches

Feature enhancements

New features



Continuous Development
Improving quality & velocity with frequent, fast feedback loops
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Roadmap for this week

• Continuous development overview (this lesson)


• “Shifting left” with continuous integration


• Deployment infrastructure


• Continuous delivery

Develop Build Test Deploy Monitor
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