
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500
Software Engineering
Lecture 10.1: Software Processes and Continuous Development

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Relate continuous development to classic software process models
(waterfall and agile)

• Identify the stages of a continuous development pipeline and
describe how they relate to improving code velocity and quality

What is a software process?

• A structured set of activities required to develop a software product

• Specification

• Design and implementation

• Validation

• Evolution (operation and maintenance)

• Goal: Minimize Risk

• Falling behind schedule

• Changes to requirements

• Bugs/unintended effects of changes

Software Verification and Validation
Quality Assurance

• Verification and validation (V & V) is intended to show that a system conforms
to its specification and meets the requirements of the customer(s).

• Involves checking and review processes, and acceptance or beta testing.

• Custom software: Acceptance testing involves executing the system with test
cases that are derived from the real data to be processed by the system in the
customer’s environment.

• Generic software: Beta testing executes the system in many customers’
environments under real use.

Software Evolution
Software is inherently flexible: we want high development velocity!
• As requirements change due to changing business circumstances, the

software that supports the business must also evolve and change.

• Most software today is built on large (and old) codebases

1% don't

99%

Synopsys (BlackDuck) 2019
audit of 1,200 proprietary
codebases: use OSS

PROPRIETARY
CODE

COMMODITY
INFRASTRUCTURE10%

OPEN SOURCE
COMPONENTS70%

20%

Examples: 
Struts, 
Django, 
NodeJS, 
React

Examples: 
Linux

Process Models

• If we say that building software requires:

• Specification

• Design/Implementation

• Validation

• Evolution

• How do we structure our organization/development teams/tasks to do this
most efficiently?

Software Processes
Code-and-fix

• Really Bad

• Really Common

• Advantages

• No Overhead

• No Expertise

• Disadvantages

• No means of assessing progress

• Difficult to coordinate multiple programmers

• Useful for “hacking” single-use/personal-use programs: start with empty program and debug until it works

Build First
Version

Retirement

Operations

Modify until
Customer satisfied

Software Processes
Waterfall Model

• Widely used today

• Advantages

• Measurable progress

• Experience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

• Produces software artifacts that can be re-used in other projects

• Disadvantages

• Difficulty of accommodating change after the process is
underway: One phase has to be complete before moving onto
the next phase.

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Software Processes
Agile Model

• Agile results in an iterative model,
where each iteration is several weeks
long and results in several features
being built

• Recognize that requirements ALWAYS
evolve as you are trying to build
something

• Plus, maybe you can get useful
feedback by delivering a partial app
early

Initial Concept

Operations

Acceptance
Testing

and Delivery

Requirements
and Iteration

Planning

Next Iteration

Design and
Implement

Cost to Fix a Defect Over Time
Rough Estimate

De
fe

ct
 C

os
t

Concept

Design

Development

Local Testing
Commit/Code Review
Integration

Production
Late-Stage Production

“Shift Left” - find defects earlier in software lifecycle

Software Processes
Continuous Development

• Like agile, but…

• Fast feedback loops

• We have a formal mechanism for deploying new versions of code and
validating (test/staging/production)

Develop Build Test Deploy Monitor

Why Continuous Development?
Unblocking developers and increasing velocity

Why Continuous Development?
Improving the end-user experience

If you have:
1 
5 
10 
100 

1,000

developers working on your product

How often can you deliver your customers:
Bug fixes

Security patches

Feature enhancements

New features

Continuous Development
Improving quality & velocity with frequent, fast feedback loops

Develop Build Test Deploy Monitor

Code Review Style Check

Compile

Unit Test

Prepare
Deployment

Integration Test

Load Test

KPIsEnd-to-end
Test

Roadmap for this week

• Continuous development overview (this lesson)

• “Shifting left” with continuous integration

• Deployment infrastructure

• Continuous delivery

Develop Build Test Deploy Monitor

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.

• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

